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Abstract
Moment matching is a popular means of para-
metric density estimation. We extend this tech-
nique to nonparametric estimation of mixture
models. Our approach works by embedding
distributions into a reproducing kernel Hilbert
space, and performing moment matching in that
space. This allows us to tailor density estima-
tors to a function class of interest (i.e., for which
we would like to compute expectations). We
show our density estimation approach is useful
in applications such as message compression in
graphical models, and image classification and
retrieval.

1. Introduction
Density estimation is a key element of statistician’s tool-
box, yet it remains a challenging problem. A popular
class of methods relies on mixture models, such as Parzen
windows (Parzen, 1962; Silverman, 1986) or mixtures of
Gaussians or other basis functions (McLachlan & Basford,
1988). These models are normally learned using the likeli-
hood. However, density estimation is often not the ultimate
goal but rather an intermediate step in solving another prob-
lem. For instance, we may ultimately want to compute the
expectation of a random variable or functions thereof. In
this case it is not clear whether likelihood is the ideal ob-
jective, especially when the training sample size is small.

A second class of density estimators employ exponen-
tial family models and are based on the duality between
maximum entropy and maximum likelihood estimation
(Barndorff-Nielsen, 1978; Dudı́k et al., 2004; Altun &
Smola, 2006). These methods match the moments of the
estimators to those of the data, which helps focus the mod-
els on certain aspects of the data for particular applications.
However, these parametric moment based methods can be
too limited in terms of the class of distributions. Further-
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more, exponential families tend to require highly nontriv-
ial integration of high-dimensional distributions to ensure
proper normalization. We desire to overcome these draw-
backs and extend this technique to a larger class of models.

In this paper, we generalize moment matching to nonpara-
metric mixture models. Our major aim is to tailor these
density estimators for a particular function class, and pro-
vide uniform convergence guarantees for approximating
the function expectations. The key idea is if we have good
knowledge of the function class, we can tightly couple the
density estimation with this knowledge. Rather than per-
forming a full density estimation where we leave the func-
tion class and subsequent operations arbitrary, we restrict
our attention to a smaller set of functions and the expec-
tation operator. By exploiting this kind of domain knowl-
edge, we make the hard density estimation problem easier.

Our approach is motivated by the fact that distributions can
be represented as points in the marginal polytope in re-
producing kernel Hilbert spaces (RKHS) (Wainwright &
Jordan, 2003; Smola et al., 2007). By projecting data and
density estimators into RKHS via kernel mean maps, we
match them in that space (also referred to as the feature
space). Choosing the kernel determines how much infor-
mation about the density is retained by the kernel mean
map, and thus which aspects (e.g., moments) of a den-
sity are considered important in the matching process. The
matching process, and thus our density estimation proce-
dure, amounts to the solution of a convex quadratic pro-
gram. We demonstrate the application of our approach in
experiments, and show that it can lead to improvements in
more complicated applications such as particle filtering and
image processing.

2. Background
Let X be a compact domain and X = {x1, . . . , xm} be
a sample of size m drawn independently and identically
distributed (iid.) from a distribution p over X . We aim to
find an approximation p̂ of p based on the sample X .

Let H be a reproducing kernel Hilbert space (RKHS) on
X with kernel k : X × X 7→ R and associated feature
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map φ : X 7→ H such that k(x, x′) = 〈φ(x), φ(x′)〉H.
By design H has the reproducing property, that is, for any
f ∈ H we have f(x) = 〈f, k(x, ·)〉H. A kernel k is called
universal if H is dense in the space of bounded continu-
ous functions C0(X ) on the compact domain X in the L∞
norm (Steinwart, 2002). Examples of such kernels include
Gaussian kernel exp(−‖x− x′‖2 /2θ2) and Laplace ker-
nel exp(−‖x− x′‖ /2θ2).

The marginal polytope is the range of the expectation of the
feature map φ under all distributions in a set P , i.e.,M :=
{µ[p]|p ∈ P, µ[p] := Ex∼p [φ(x)]} (Wainwright & Jordan,
2003). The map µ : P 7→ H associates a distribution to an
element in the RKHS. For universal kernels, the elements
of the marginal polytope uniquely determine distributions:

Theorem 1 (Gretton et al. (2007)) Let k be universal and
P denote the set of Borel probability measures p on X with
Ex∼p [k(x, x)] <∞. Then the map µ is injective.

3. Kernel Moment Matching
Given a finite sample X from p, µ[p] can be approximated
by the empirical mean map µ[X] := 1

m

∑m
i=1 φ(xi). This

suggests that a good estimate p̂ of p should be chosen such
that µ[p̂] matches µ[X]: this is the key idea of the paper.
The flow of reasoning works as follows:

density p→ sample X → empirical mean µ[X]
→ density estimation via µ[p̂] ≈ µ[X] (1)

The first line of this reasoning was established in (Al-
tun & Smola, 2006, Theorem 15). Let Rm(H, p) be the
Rademacher average (Bartlett & Mendelson, 2002) associ-
ated with p andH via

Rm(H, p) := 1
mEXEω

[
sup‖f‖H≤1

∣∣∣∑m

i=1
ωif(xi)

∣∣∣] .

where ω ∈ {±1} is uniformly random. We use it to bound
the deviation between empirical means and expectations:

Theorem 2 (Altun & Smola (2006)) Assume ‖f‖∞ ≤ R
for all f ∈ H with ‖f‖H ≤ 1. Then for ε > 0
with probability at least 1 − exp(−ε2mR−2/2) we have
‖µ[p]− µ[X]‖H ≤ 2Rm(H, p) + ε.

This ensures that µ[X] is a good proxy for µ[p]. To carry
out the last step of (1) we assume the density estimator p̂ is
a mixture of a set of candidate densities pi (or prototypes):

p̂ =
∑n

i=1
αipi where α>1 = 1 and αi ≥ 0, (2)

where 1 is a vector of all ones. Here the goal is to obtain
good estimates for the coefficients αi and to obtain perfor-
mance guarantees which specify how well p̂ is capable of
estimating p. This can be cast as an optimization problem:

min
α
‖µ[X]− µ[p̂]‖2H s.t. α>1 = 1 , αi ≥ 0. (3)

To prevent overfitting, we add a regularizer Ω[α], such as
1
2 ‖α‖

2, and weight it by a regularization constant λ > 0.

Using the expansion of p̂ in (2) we obtain a quadratic pro-
gram (QP) for α

min
α

1
2α>(Q + λI)α− l>α s.t. α>1 = 1 , αi ≥ 0, (4)

where I is the identity matrix. Q ∈ Rn×n and l ∈ Rn are
given by
Qij = 〈µ[pi], µ[pj ]〉H = Ex∼pi,x′∼pj

[k(x, x′)] , (5)

lj = 〈µ[X], µ[pj ]〉H = 1
m

∑m

i=1
Ex∼pj [k(xi, x)] . (6)

By construction Q � 0 is positive semidefinite, hence the
program (4) is convex. We will discuss examples of kernels
k and prototypes pi where Q and l have closed form in Sec-
tion 5. In many cases, the prototypes pi also contain tun-
able parameters. We can also optimize them via gradient
methods. Before doing so, we first explain our theoretical
basis for tailoring density estimators.

4. Tailoring Density Estimators
Given functions f ∈ H, a key question is to bound how
well the expectations of f with respect to p can be approx-
imated by p̂. We have the following lemma:

Lemma 3 Let ε > 0 and ε′ := ‖µ[X]− µ[p̂]‖H. Under
the assumptions of Theorem 2 we have with probability at
least 1− exp(−ε2mR−2/2)

sup
‖f‖H≤1

|Ex∼p[f(x)]− Ex∼p̂[f(x)]| ≤ 2Rm(H, p) + ε + ε′.

Proof In the RKHS, we have Ex∼p[f(x)] = 〈f, µ[p]〉H
and Ex∼p̂[f(x)] = 〈f, µ[p̂]〉H. Hence the LHS of the
bound equates to sup‖f‖H≤1 | 〈µ[p]− µ[p̂], f〉 |, which is
given by ‖µ[p]− µ[p̂]‖H. Using the triangle inequality, our
assumption on µ[p̂] and Theorem 2 completes the proof.

This means that we have good control over the behavior of
the expectations, as long as the function class is “smooth”
on X in terms of the Rademacher average. It also means
that ‖µ[X]− µ[p̂]‖H is a sensible objective to minimize if
we are only interested in approximating well the expecta-
tions over functions f .

This bound also provides the basis for tailoring density es-
timators. Essentially, if we have good knowledge of the
function class used in an application, we can choose the
corresponding RKHS or the mean map. This is equivalent
to filtering the data and extracting only certain moments.
Then the density estimator p̂ can focus on matching p only
up to these moments.

5. Examples
We now give concrete examples of density estimation. A
number of existing methods are special cases of our setting.

5.1. Discrete Prototype or Discrete Kernel
The simplest case is to represent p by a convex combina-
tion of Dirac measures pi(x) = δxi

. Particle filters (Doucet
et al., 2001) use this choice when approximating distribu-
tions. For instance, we could choose xi to be the set of
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Table 1. Expansions for Qij and lj when using Gaussian prototypes and various kernels in combination. Let c := 〈xi, xj〉+ 1.
Kernel Qij lj

Linear kernel
˙
x, x′

¸
〈xi, xj〉 1

m

Pm
i=1 〈xi, xj〉

Degree 2 polynomial kernel (
˙
x, x′

¸
+ 1)2 c2 + tr ΣiΣj + x>i Σjxi + x>j Σixj

1
m

Pm
i=1(c

2 + x>i Σjxi)

Degree 3 polynomial kernel (
˙
x, x′

¸
+ 1)3 c3 + 6x>i ΣiΣjxj + 3c(tr ΣiΣj + x>i Σjxi + x>j Σixj)

1
m

Pm
i=1(c

3 + 3cx>i Σjxi)

Gaussian RBF kernel e
− 1

2θ2 ‖x−x′‖2
θd

˛̨
Σi + Σj + θ2I

˛̨− 1
2 e

− 1
2‖xi−xj‖2(Σi+Σj+θ2I) 1

m θd
˛̨
Σj + θ2I

˛̨− 1
2

Pm
i=1 e

− 1
2‖xi−xj‖2(Σj+θ2I)

training points. In this case Q defined in (5) equals the ker-
nel matrix and l is the vector of empirical kernel averages:

Qij = k(xi, xj) and lj = 1
m

∑m

i=1
k(xi, xj). (7)

The key difference between an unweighted set as used in
particle filtering and our setting is that our expansion is
specifically optimized towards good estimates with respect
to functions drawn fromH.

The problem of data squashing (DuMouchel et al., 1999)
can likewise be seen as a special case of kernel mean
matching. Here one aims to approximate a potentially large
set X by a smaller set X ′ = {(x1, α1), . . . , (xn, αn)} of
weighted observations. We want to discard X and only re-
tain X ′ for all further processing. If ‖µ[X] − µ[X ′]‖H is
small, we expect X ′ to be a good proxy for X .

Instead of using generic kernels k and discrete measures
δxi as prototypes for density estimation, we may reverse
their roles. That is, we may pick generic densities pi and a
Dirac kernel k(x, x′) = δ(x = x′). Note this is only well
defined for discrete domains X .1 In this case the mean op-
erator simply maps a distribution into itself and we obtain
〈µ[p], µ[p′]〉H =

∫
X p(x)p′(x)dx. Using (5) we have

Qij =
∫
X

pi(x)pj(x)dx and lj = 1
m

∑m

i=1
pj(xi). (8)

5.2. Gaussian Prototype
In general we will neither pick discrete prototypes nor dis-
crete kernels for density estimation. We now give explicit
expressions for Gaussian prototypes

pi(x) = (2π)−
d
2 |Σi|−

1
2 exp

(
− 1

2 ‖x− xi‖2Σi

)
, (9)

where d is the dimension of the data, Σi � 0 is a covariance
matrix, and ‖x− x′‖2Σi

:= (x − x′)>Σ−1
i (x − x′) is the

squared Mahalanobis distance. When used in conjunction
with different kernels, we have the expansions in Table 1.

5.3. Other Prototypes and Kernels
Other combinations of kernels and prototypes also lead
to closed form expansions. For instance, similar expres-
sions also holds for a Laplacian kernel. However, this
involves considerably more tedious integrals of the form∫

e−λ(|x|+|x−a|)dx = λ−1 + e−λ|a|. Another example is
to use indicator functions on unit intervals centered at xi as
pi and a Gaussian RBF kernel. In this case, both Q and l
can be expressed using the error function (erf).

1On continuous domains such a kernel does not correspond to
an RKHS since the point evaluation is not continuous.

Furthermore, Jebara et al. (2004) introduced kernels on
probability functions which effectively used definition (5).
While they were not motivated by the connection between
kernels and density estimation, their results for rich classes
of densities, such as HMMs, can be used directly to com-
pute our Q and l.

6. Related Work
Our work is related to the density estimators of Vapnik &
Mukherjee (2000) and Shawe-Taylor & Dolia (2007). The
main difference lies in the function space chosen to mea-
sure the approximation properties. The former uses the
Banach space of functions of bounded variation, while the
latter uses the space L1(q), where q denotes a distribution
over test functions. For spherically invariant distributions
over test functions our approach and the latter approach are
identical, with a key difference (to our advantage) that our
optimization is a simple QP which does not require con-
straint sampling to make the optimization feasible.

Support Vector Density Estimation The model of Vap-
nik & Mukherjee (2000) can be summarized as follows: let
F [p̂] be the cumulative distribution function of p̂ and let
F [X] be its empirical counterpart. Assume p̂ is given by
(2), and that we have a regularizer Ω[α] as previously dis-
cussed. In this case the Support Vector Density Estimation
problem can be written as

min
α feasible

1
m

∑m

i=1
|F [p̂](xi)− F [X](xi)|+ λΩ[α]. (10)

That is, we minimize the `1 distance between the empir-
ical and estimated cumulative distribution functions when
evaluated on the set of observations X .

To integrate this into our framework we need to extend
our setting from Hilbert spaces to Banach spaces. De-
note by B a Banach space, let X be a domain furnished
with probability measures p, p′, and let φ : X 7→ B be
a feature map into B. Analogously, we define the mean
map µ : P 7→ B as µ[p] := Ex∼p(x) [φ(x)]. More-
over, we define a distance between distributions p and p′

via D(p, p′) := ‖µ[p]− µ[p′]‖B. If we choose φ(x) =(
χ(−∞,x](x1), . . . , χ(−∞,x](xm)

)>
where χ is the indica-

tor function, and use the `m
1 norm on φ we recover SV den-

sity estimation as a special case.

Expected Deviation Estimation Shawe-Taylor & Dolia
(2007) defined a distance between distributions as follows:
let H be a set of functions on X and q be a probability
distribution over F . Then the distance between two distri-
butions p and p′ is given by
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D(p, p′) := Ef∼q(f) |Ex∼p[f(x)]− Ex∼p′ [f(x)]| . (11)

That is, we compute the average distance between p and p′

with respect to a distribution of test functions.
Lemma 4 Let H be a reproducing kernel Hilbert space,
f ∈ H, and assume q(f) = q(‖f‖H) with finite
Ef∼q[‖f‖H]. Then D(p, p′) = C ‖µ[p]− µ[p′]‖H for
some constant C which depends only onH and q.
Proof Note that by definition Ex∼p[f(x)] = 〈µ[p], f〉H.
Using linearity of the inner product, Equation (11) equals∫

|〈µ[p]− µ[p′], f〉H|dq(f)

= ‖µ[p]− µ[p′]‖H
∫ ∣∣∣∣〈 µ[p]− µ[p′]

‖µ[p]− µ[p′]‖H
, f

〉
H

∣∣∣∣ dq(f),

where the integral is independent of p, p′. To see this, note
that for any p, p′, µ[p]−µ[p′]

‖µ[p]−µ[p′]‖H
is a unit vector which can

be turned into, say, the first canonical basis vector by a ro-
tation which leaves the integral invariant, bearing in mind
that q is rotation invariant.

The above result covers a large number of interesting func-
tion classes. To go beyond Hilbert spaces, let φ : X 7→ B
be the transformation from x into f(x) for all f ∈ H and
‖z‖B := Ef∼q(f)[|zf |] be the L1(q) norm. Then (11) can
also be written as ‖µ[p]− µ[p′]‖B, where µ is the mean
map into Banach spaces. Its main drawback is the nontriv-
ial computation for constraint sampling (de Farias & Roy,
2004) and the additional uniform convergence reasoning
required. In Hilbert spaces no such operations are needed.

7. Experiments
We focus on two aspects: first, our method performs well
as a density estimator per se; and second, it can be tailored
towards the expectation over a particular function class.
7.1. Methods for Comparison
Gaussian Mixture Model (GMM)2 The density was
represented as a convex sum of Gaussians. GMM was ini-
tialized with k-means clustering. The centers, covariances
and mixing proportions of the Gaussians were optimized
using the EM algorithm. We used diagonal covariances
in all our experiments. We always employed 50 random
restarts for k-means, and returned the results from the best
restart.
Parzen Windows (PZ) The density was represented as
an average of a set of normalized RBF functions, with
each centered on a data point. The bandwidths of the RBF
functions were identical and tuned via the likelihood using
leave-one-out cross validation.
Reduced Set Density Estimation (RSDE)3 Girolami &
He (2003) compressed a Parzen window estimator using
RBF functions of larger bandwidths. The reduced represen-
tation was produced by minimizing an integrated squared

2GMM codes from: http://www.datalab.uci.edu/resources/gmm/
3PZ and RSDE from: http://ttic.uchicago.edu/∼ihler/code/

50 150 250 350 450
3.8

3.9

4

4.1

4.2

Training Sample Size

N
eg

at
iv

e 
Lo

g 
Li

ke
lih

oo
d GMM

PZ
RSDE
KMM

Figure 1. Left: Negative log-likelihood using a mixture of 3
Gaussians. The height of the bars represents the median of the
scores from 100 repeats, and the whiskers correspond to the
quartiles. We mark the best method with a black dot above the
whiskers. Right: Sparsity of KMM solution. Blue dots are data
points. Red circles represent prototypes selected by KMM. The
size of a circle is proportional to the magnitude of its weight αi.

distance between the two densities.

Kernel Moment Matching (KMM) In applying our
method, we used Gaussians with diagonal covariances as
our prototypes pi. The regularization parameter λ in our
algorithm was fixed at 10−10 throughout. Since KMM may
be tailored for different RKHS, we instantiated it with the
four different kernels in Table 1. We denote them as LIN,
POL2, POL3 and RBF, respectively. Our choice of kernel
corresponded to the function class where we evaluated the
expectations. The initialization of the prototypes will be
further discussed below.

7.2. Evaluation Criterion
We compared various density estimators in terms of two
criteria: negative log-likelihood and discrepancy between
function expectations on test data. Since different algo-
rithms are optimized using different criteria, we expect that
each will win with respect to the criterion it employs. The
benefit of our density estimator is that we can explicitly
tailor for different classes of functions. For this reason, we
will focus on the second criterion.

Given a function f , the discrepancy between function ex-
pectations is computed as follows: (i) Evaluate function
expectation using test points, i.e., 1

m

∑m
i=1 f(xi); (ii) Eval-

uate function expectation using estimated density p̂, i.e.,
Ex∼p̂[f(x)]. (iii) Calculate

∣∣ 1
m

∑m
i=1 f(xi)− Ex∼p̂[f(x)]

∣∣
and normalize it by

∣∣ 1
m

∑m
i=1 f(xi)

∣∣.
We will compare various methods either by repeated ran-
dom instantiation or random split of the data (which we
will make clear in context). For both cases, we will per-
form paired sign tests at the significance level of 0.01 on the
results obtained from the randomizations. We will always
present the median of the results in subsequent tables, and
highlight in boldface those statistically equivalent methods
that are significantly better than the rest.

7.3. Synthetic Dataset
In this experiment, we use synthetic datasets to compare
various methods as the sample size changes. We also show
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Table 2. Sparsity of the solution of RSDE and KMM. We show
the median of the number of retained prototypes from 100 random
initializations. Also shown are median percentages of retained
prototypes after optimization.
Sample Size 50 150 250 350 450

RSDE 12 (25.0%) 35 (23.3%) 62 (24.8%) 90 (25.9%) 124 (27.5%)
KMM 10 (20.0%) 21 (14.0%) 30 (12.0%) 36 (10.3%) 42 (9.3%)

that KMM leads to sparse solutions.
Data Generation We generated 2 dimensional mixtures
of 3 Gaussians with centers (0, 0)>, (3, 3)> and (−6, 4)>,
and covariances 0.82I, 1.22I and I respectively. The mix-
ing proportions were 0.2, 0.3 and 0.5 respectively. We var-
ied the training sample size while always testing on sam-
ples of size 1000. For each fixed training size, we randomly
instantiated the experiments 100 times.
Experimental Protocol All training data points were
used as prototypes for RSDE and KMM. Their initial co-
variances were set to be identical, and were initialized in
both cases using the approach of RSDE. We used the RBF
instance of KMM and set the bandwidth θ of the kernel to
be the same as that for the prototypes. GMM used 3 cen-
ters.
Negative Log Likelihood The results are plotted in Fig-
ure 1. GMM performs best in general, while KMM is su-
perior for small sample sizes. This is not surprising since
we used a correct generative model of the data for GMM.
When the sample size is small (less than 30 data points
for each cluster), GMM is susceptible to local maxima and
does not result in good estimates.
Sparsity of the Solution KMM also leads to sparse so-
lutions (e.g., Figure 1). When using all data points as can-
didate prototypes, KMM automatically prunes away most
of them and results in a much reduced representation of the
data. In terms of both likelihood and sparsity, KMM is su-
perior to other reduction method such as RSDE (Table 2).

7.4. UCI Dataset
We used 15 UCI datasets to compare various methods
based on the discrepancies between function expectations.

Data Description We only included real-valued dimen-
sions of the data, and normalized each dimension of the
data separately to zero mean and unit variance. For each
dataset, we randomly shuffled the data points for 50 times.
In each shuffle, we used the first half of the data for training
and the remaining data for testing. In each shuffle, we ran-
domly generated 100 functions f to evaluate the discrep-
ancy criterion, i.e., f =

∑m0
i=1 wik(xi, ·) where m0 ∈ N

was uniformly random in [1,m], wi ∈ R was uniformly
random in [−1, 1], and the xi were uniformly sampled from
the test points. Thus, each method resulted in 5000 num-
bers for each dataset.

Experimental Protocol Both GMM and KMM used 10
prototypes and diagonal covariances, and both were initial-
ized using k-means clustering. We used all four instances

Table 3. Negative log-likelihood on test points as computed by
various density estimators over randomizations.

Data PZ GMM RSDE LIN POL2 POL3 RBF
covertype 11.48 11.22 14.97 11.64 208.29 45.23 62.37
ionosphere 28.09 36.58 56.68 29.55 69.92 68.79 46.49

sonar 78.29 119.16 122.35 78.13 129.81 92.35 112.21
australian 3.32 5.82 8.82 3.40 4.64 22.73 7.27

specft 43.01 42.61 43.16 42.90 231.76 87.28 105.04
wdbc 25.17 42.97 48.44 25.98 248.73 63.61 88.61
wine 19.68 21.17 22.95 19.43 70.15 47.99 48.94

satimage 18.49 39.10 59.88 20.18 158.31 121.27 52.41
segment -1.43a 5.71 36.74 -1.07 154.25 128.74 28.38
vehicle 10.98 11.99 32.85 11.34 170.66 200.22 83.35

svmguide2 27.85 39.67 40.07 27.92 204.30 59.22 36.08
vowle 11.75 6.24 25.59 11.77 108.43 47.45 26.18

housing 3.68 7.44 15.53 3.81 16.07 90.51 39.88
bodyfat 16.38 20.06 21.96 16.59 87.23 171.53 53.33
abalone 2.53 2.57 10.17 2.75 19.15 21.77 16.29

mix3 100 2.42 2.09 2.12 2.55 2.49 2.43 2.41
mix3 500 1.91 1.92 1.92 1.94 1.93 1.91 1.91

mix3 1000 1.86 1.87 1.88 1.88 1.87 1.87 1.86

aSome numbers are negative, which is possible since unlike
probability mass function, density can take values greater than 1.

of KMM, namely LIN, POL2, POL3 and RBF, for the ex-
periments, depending on the function class where we eval-
uated the expectations. When we used the RBF instance of
KMM, we set the bandwidth θ of the kernel to the median
of the distances between data points. Besides optimizing
the mixing proportions of the prototypes of KMM, we also
used conjugate gradient descent to optimize the center po-
sitions and covariances of the prototypes.
Negative Log Likelihood Kernel moment matching can
be a very different objective from the likelihood (Table 3).
Except for the LIN instance, KMM results in much larger
negative log-likelihood. This suggests that if the purpose of
density estimation is to approximate the function expecta-
tions, likelihood is no longer a good criterion. We confirm
this observation in our next experiment.
Discrepancy between Function Expectations We used
four classes of functions corresponding to the RKHS of the
LIN, POL2, POL3 and RBF instances of KMM. For non-
linear functions KMM clearly outperforms other density
estimators, while for linear functions KMM has equivalent
performance to PZ and GMM (Table 4). These results are
not surprising, since KMM is explicitly optimized for ap-
proximating the function expectations well. Note that PZ
is the second best for polynomial functions. This is rea-
sonable since PZ retains all training points in the density,
and should perform better than compressed representations
such as GMM and RSDE. We also applied this new exper-
imental protocol to the synthetic mixture of 3 Gaussians
from the last section. We instantiate the synthetic data with
3 different sample sizes: 100, 500 and 1000. The results
are shown in the last three rows of Table 3 and 4, which
are consistent with those for UCI data. A closer view of
the difference between GMM and KMM using “covertype”
dataset is shown in Figure 2. We chose to compare GMM
and KMM because they are initialized similarly.

As an aside, we remark that PZ and GMM also match the
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Figure 2. Scatter plot of the discrepancies between function ex-
pectations (in log scale) for the ‘covertype’ dataset, with GMM
discrepancies on the horizontal axis and KMM discrepancies on
the vertical axis. Left: plot for polynomial functions (d = 2);
Right: plot for RBF functions. The distribution of the points is
skewed below the red diagonal line, which means KMM is better.
The numbers near the corners count respectively the number of
points falling above and below the red diagonal.

empirical mean 1
m

∑m
j=1 xj . This is obvious for PZ. For

GMM, in each EM iteration, the centers µi and weights
αi of each pi are updated via µi ←

∑m
j=1 τ i

jxj/
∑m

j=1 τ i
j

and αi ← 1
m

∑m
j=1 τ i

j . Here τ i
j is the probability of xj

being generated by pi. It follows that Ep[x] =
∑

i αiµi

also matches 1
m

∑m
j=1 xj .

8. Applications
In this section, we employ KMM for two different applica-
tions: message compression in graphical models, and im-
age processing. The common feature of these two applica-
tions is that they involve density estimation for computing
the expectation of a function, which is the relevant setting
for KMM.

8.1. Message Compression
We use density estimation to compress messages in graph-
ical models. This is of particular interest for applications
such as distributed inference in sensor networks. It is our
desire to compress the messages to cater for limited power
supply and communication bandwidth. We will use a par-
ticle filtering example to compare GMM and KMM only,
since they performed best in our earlier experiments.

We model a one dimensional time series yt (t = 1 . . . 100)
as being conditionally independent given an unobserved
state st, which is itself Markovian. This system evolves
as follows:

st = f(st−1) = 1 + sin(0.04πt) + 0.5st−1 + ξ (12)

yt = g(st) =

{
0.2s2

t + ζ, if t < 50,

0.5st − 2 + ζ, otherwise.
(13)

The random variables ξ and ζ represent process and mea-
surement noise, respectively, and are modeled as mixtures
of Gaussians,

ξ ∼ 1
5

∑5

i=1
N (µi, σ), ζ ∼ N (0, σ). (14)

Throughout this experiment, we fix σ to 0.2 and choose
µi to be {−1.5,−0.5, 0.5, 1.5, 2}. We initialize s0 with ξ.

Note that our setting is a modification of de Freitas’s demo4

where we only change the process noise from a unimodal
gamma distribution to a more complicated mixture model.

The task of particle filtering (Doucet et al., 2001) is to in-
fer the hidden state given past and current observations.
This can be carried out by estimating the filtering density
p(st|Yt) := p(st|y1, . . . , yt) recursively in a two-stage pro-
cedure. First, the current filtering density p(st|Yt) is prop-
agated into the future via the transition density p(st+1|st)
to produce the prediction density p(st+1|Yt), i.e.,

Est∼p(st|Yt)[p(st+1|st)] :=
∫

p(st+1|st)p(st|Yt)dst. (15)

Second, p(st|Yt) is updated via Bayes’ law,
p(st+1|Yt+1) ∝ p(yt+1|st+1)p(st+1|Yt). (16)

The integral in (15) is usually intractable since the filter-
ing density p(st|Yt) can take a complicated form. There-
fore, p(st|Yt) is often approximated with a set of samples
called particles. For distributed inference, it is these sam-
ples that need to be passed around. We want to compress
the samples using density estimation such that we still do
well in computing Est∼p(st|Yt)[p(st+1|st)]. In our exam-
ple, p(st+1|st) takes the form

p(st+1|st) ∝
∑5

i=1
exp

(
− (st+1−f(st)−µi)

2

2σ2

)
. (17)

In terms of variable st, p(st+1|st) is in the RKHS with ker-
nel k(x, x′) = exp

(
− (x−x′)2

2(2σ)2

)
. We can customize KMM

using this kernel, and compress messages by targeting a
good approximation of Est∼p(st|Yt)[p(st+1|st)].

We use 5 centers for both GMM and KMM to compress the
messages. We compare the filtering results with the true
states. The error is measured as the root mean square of
the deviations. The results for compressing different num-
bers of particles are reported in Table 5. We find that fil-
tering results after compression even outperform those ob-
tained from the full set of particles (PF). In particular, the
results for KMM are slightly better than those for GMM.
By compression, we have extracted the information most
essential to statistical inference, and actually made the in-
ference more robust. If the compression is targeted to
Est∼p(st|Yt)[p(st+1|st)] (as we do in KMM), we can sim-
ply get better results.

The shortcomings of general purpose density estimation
also arise in the more general settings of message passing
and belief propagation. This is due to the way messages
are constructed: given a clique, the incoming messages are
multiplied by the clique potential and all variables not in
the receiver are integrated out. In most cases, this makes
the outgoing messages very complicated, causing signif-
icant computational problems. Popular methods include

4http://www.cs.ubc.ca/∼nando/software/upf demos.tar.gz



Tailoring Density Estimation via Reproducing Kernel Moment Matching

Table 4. Discrepancy between function expectations over randomizations. Smaller numbers are not necessarily statistical significant.
Data Linear Functions Polynomials (d = 2) Polynomials (d = 3) RBF Functions

PZ GMM RSDE LIN PZ GMM RSDE POL2 PZ GMM RSDE POL3 PZ GMM RSDE RBF
covertype 2.003 2.003 10.280 2.003 0.185 0.194 0.396 0.150 0.418 0.539 1.240 0.412 0.073 0.023 0.071 0.020
ionosphere 2.006 2.006 17.995 2.006 0.159 0.232 0.383 0.169 0.615 0.664 1.659 0.626 0.120 0.024 0.142 0.022

sonar 2.000 2.000 12.288 2.000 0.971 0.354 0.933 0.242 0.691 0.745 2.558 0.673 0.857 0.030 0.873 0.029
australian 2.000 2.000 14.217 2.000 0.369 0.380 0.587 0.380 0.832 0.837 1.031 0.833 0.089 0.028 0.106 0.024

specft 2.000 2.000 3.594 2.000 0.891 0.515 0.522 0.488 0.922 0.878 1.265 0.867 0.903 0.067 0.904 0.062
wdbc 2.004 2.004 16.447 2.004 0.209 0.233 0.406 0.166 0.519 0.612 1.362 0.512 0.482 0.027 0.456 0.023
wine 2.017 2.017 9.489 2.017 0.822 0.236 1.027 0.211 0.679 0.718 2.782 0.682 0.471 0.040 0.545 0.039

satimage 2.000 2.000 27.561 2.000 0.146 0.126 0.533 0.122 0.260 0.281 1.230 0.256 0.307 0.028 0.359 0.026
segment 2.003 2.003 23.388 2.003 0.258 0.245 0.803 0.263 0.590 0.572 1.021 0.588 0.053 0.025 0.247 0.022
vehicle 2.005 2.005 26.331 2.005 0.126 0.135 0.780 0.119 0.496 0.478 1.686 0.493 0.095 0.028 0.325 0.027

svmguide2 2.005 2.005 7.248 2.005 3.468 0.247 3.341 0.183 0.866 0.782 2.603 0.729 0.798 0.019 0.808 0.018
vowle 2.000 2.000 12.913 2.000 0.131 0.150 0.642 0.131 0.348 0.394 1.741 0.352 0.028 0.019 0.111 0.018

housing 2.000 2.000 7.668 2.000 0.117 0.126 0.399 0.121 0.393 0.421 0.890 0.391 0.044 0.027 0.091 0.025
bodyfat 2.000 2.000 7.295 2.000 0.288 0.243 0.595 0.242 1.029 1.017 1.200 1.015 0.430 0.038 0.432 0.037
abalone 2.005 2.005 17.010 2.005 0.105 0.101 0.234 0.103 0.629 0.636 3.308 0.628 0.049 0.044 0.294 0.043

mix3 100 2.000 2.000 2.164 2.000 0.153 0.152 0.164 0.152 0.248 0.242 0.271 0.244 0.046 0.044 0.046 0.044
mix3 500 2.000 2.000 2.069 2.000 0.064 0.062 0.064 0.062 0.094 0.092 0.097 0.091 0.020 0.019 0.020 0.019
mix3 1000 2.000 2.000 2.035 2.000 0.052 0.051 0.051 0.050 0.082 0.081 0.082 0.080 0.015 0.014 0.015 0.014

Table 5. Root mean square error and standard deviation of the fil-
tering results before and after particle compression. We randomly
instantiated the system 50 times and concatenate the times to pro-
duce the results. Statistical tests are done by viewing each time
point as a data point.

Particle # PF GMM KMM
100 0.683±0.114 0.558±0.084 0.546±0.072
500 0.679±0.111 0.556±0.076 0.530±0.070

1000 0.685±0.111 0.556±0.082 0.526±0.070

particle filtering, which uses a discrete approximation of
the messages, and expectation propagation, which uses a
single Gaussian approximation of the messages (Minka,
2001). We plan to further investigate KMM in these gen-
eral settings. Our key benefit is that we can customize the
approximation properties for a particular graphical model.

8.2. Image Retrieval and Categorization
Following the work of (Rubner et al., 2000; Greenspan
et al., 2002), we use density estimation as an intermediate
step for image retrieval and categorization.

8.2.1. IMAGE RETRIEVAL

Image retrieval is the task of finding from a given database
the set of images similar to a given query image. An im-
age is normally characterized by the distribution over fea-
tures (e.g., color, texture) of pixels, patches, etc. It is thus
helpful to compress the distribution by density estimation
into more compact forms (e.g., mixtures of Gaussians), on
which the query is based. In particular, the advantage is
that density estimation can be computed offline before the
query takes place, thus offering computational and storage
savings.
Method Greenspan et al. (2002) used GMM for den-
sity estimation; we propose KMM as an alternative. After
density estimation, the dissimilarity between two distribu-
tions needs to be measured and the Earth Mover’s Distance
(EMD) is a state-of-the-art measure. Given two distribu-
tions represented by sets of weighted prototypes, EMD re-
gards one collection as mass of earth spread in the fea-
ture space, while the other is a collection of holes. The
EMD is defined as the least amount of work needed to
fill the holes with earth. A unit of work corresponds to

the ground distance between two prototypes. If we rep-
resent the distributions by mixtures of Gaussians, then a
sensible ground distance D(pi, p

′
j) between two Gaussians

pi = N (µi,Σi) and p′j = N (µ′j ,Σ
′
j) is the Fréchet dis-

tance used in (Greenspan et al., 2002),
D2(pi, p

′
j) := |µi − µ′j |2 + tr

(
Σi + Σ′j − 2(ΣiΣ′j)

1/2
)

.

Based on D(pi, p
′
j), if p =

∑
i αipi where pi is a Gaussian

and αi is its weight, and similarly p′ =
∑

j α′jp
′
j , then the

EMD between p and p′ is

EMD(p, p′) := min
γij feasible

∑
i

∑
j
γijD(pi, p

′
j),

where γij ≥ 0 is the flow between pi and qj . Feasibility
means

∑
i γij ≤ α′j and

∑
j γij ≤ αi for all i and j.

Settings In this experiment, the distance measure is fixed
to EMD. We plug the densities estimated by GMM and
KMM into EMD5, and compare the retrieval results. Para-
meters for KMM and GMM were chosen in the same way
as in Section 7.4. Here KMM used POL3. For each image,
we sampled 103 pixels and each pixel’s feature vector was
the CIE-Lab value of a 5×5 window centered on it.
Results We collected L = 10537 images from various
sources including FIRE and CIRES6. The dataset included
10 labeled categories like horse, beach, and each cate-
gory has 100 images. For each image Ic(i) from class
c (c ∈ {1, ..., 10}, i ∈ {1, ..., 100}), we retrieved r
(r ∈ {1, ..., L}) closest images (in terms of EMD) from
the whole database and counted how many among them are
also from class c, denoted as gc(i, r) for GMM and kc(i, r)
for KMM. For each c and r, we performed a paired sign test
between {gc(i, r)}100i=1 and {kc(i, r)}100i=1. Since p-value is
always in (0,1], we report in Figure 3 the log p-value if the
median of {kc(i, r) − gc(i, r)}100i=1 is higher than 0. Oth-
erwise, we plot the negative log p-value. Negative values
are in favor of KMM. In Figure 3, performance of KMM is
superior to or competitive with GMM in 8 categories and
for most values of r (number of retrieved images).

5EMD code from http://ai.stanford.edu/∼rubner/emd
6FIRE: http://www-i6.informatik.rwth-aachen.de/

∼deselaers/fire.html, CIRES: http://cires.matthewriley.com
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Figure 3. Log sign test p-value (vertical axis) v.s. # retrieved images (horizontal axis).
Negative if KMM is better than GMM, and positive otherwise. ±2 for significance level 0.01.
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Figure 4. Error rate of image cate-
gorization using KMM and GMM.

It is important to note that the Fréchet distance is not in the
class of functions used in KMM, and KMM still performs
reasonably well. In the next section, we learn an image
classifier using the same kernel as used in KMM.

8.2.2. IMAGE CATEGORIZATION

A closely related but different task is learning to cate-
gorize images using multi-class classification, particularly
by SVM. Here all we need is a kernel between pairs
of image densities p and q, which is readily given by
〈µ[p], µ[q]〉H. The SVM classifier takes the form f(pj) =∑

i γi 〈µ[pi], µ[pj ]〉 = Ex∼pj
[
∑

i γiµ[pi](x)] for some
γi ∈ R. Since

∑
i γiµ[pi] ∈ H, KMM ensures that pj is

estimated such that this expectation is well approximated.

Our 10-class classification used 1000 images from the 10
categories. We randomly divided each category into 70 im-
ages for training and 30 images for testing. We used Lib-
SVM to train a multi-class SVM with one-against-one cri-
terion on the combined 700 training images. The loss and
regularization tradeoff parameter was determined by an in-
ner loop 10-fold cross validation on the training data. Fi-
nally we test the accuracy of the learned model on the 300
test images. The whole process is repeated for 1500 times.
We use POL3 for both KMM and SVM, because for both
GMM and KMM, POL3 significantly outperforms POL2
and RBF in practice7. By using paired sign test, KMM
yields lower error rate than GMM at significance level 0.01.
Figure 4 shows the scatter plot of the resulting error rates.
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